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Abstract

In this work, a goodness–of–fit test for the null hypothesis of a functional linear model with

scalar response is proposed. The test is based on a generalization to the functional framework

of a previous one, designed for the goodness–of–fit of regression models with multivariate

covariates using random projections. The test statistic is easy to compute using geometrical

and matrix arguments, and simple to calibrate in its distribution by a wild bootstrap on the

residuals. The finite sample properties of the test are illustrated by a simulation study for

several types of basis and under different alternatives. Finally, the test is applied to two datasets

for checking the assumption of the functional linear model and a graphical tool is introduced.
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1 Introduction

Functional data analysis has grown in popularity for the last years due to the increasingly data

availability for continuous time processes. Typical examples of functional data include the temper-

ature evolution, stock prices and path trajectories for objects in movement. New statistical methods

have been developed to deal with the richer nature of functional data, being Ramsay and Silverman

(2005), Ferraty and Vieu (2006) and Ferraty and Romain (2011) some of the main reference books

in this area.

In many situations, the functional data is related to a scalar variable. For this cases, it is inter-

esting to assess the relation of the variables via a regression model, which can be used to predict

the scalar response from the functional input. Analogue to the multivariate situation, the simplest

functional regression model corresponds to the functional linear model with scalar response (see

Ramsay and Silverman (2005) for a review).

An interesting methodology approach to deal with functional data is the use of random pro-

jections. The objective is to characterize the behaviour of a functional process, which has infinite

dimension, via the behaviour of the one dimensional inner products of the functional process with

suitable random functions. This method has interesting applications for the goodness–of–fit of

the distribution of the process, as it can be seen in Cuesta-Albertos et al. (2007). More recently,

Patilea et al. (2012) provide a projection–based test for functional covariate effect in a functional

regression model with scalar response. In their paper, the authors adapt the tests of Zheng (1996)

and Lavergne and Patilea (2008), based on smoothing techniques, to the context of functional co-

variates.

In this work, a first goodness–of–fit test for the null hypothesis of the functional linear model,

2
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sa

nt
ia

go
 d

e 
C

om
po

st
el

a]
 a

t 0
8:

11
 2

1 
O

ct
ob

er
 2

01
3 



ACCEPTED MANUSCRIPT

H0 : m ∈ {〈∙, β〉 : β ∈ H}, beingH the Hilbert space of square integrable functions, is proposed. The

statistic test is of a Craḿer–von Mises type and is based on a generalization of a previous test of

Escanciano (2006), designed for the case of a regression model with multivariate covariates. The

test statistic is easy to compute using geometrical arguments and simple to calibrate in its distri-

bution by a wild bootstrap on the residuals. Further, although the test is given for the functional

linear model, it can be extended to other functional models with scalar response, as it is based on

the residuals of the model.

This work is organized as follows. Some background on functional data, the functional linear

model and the random projections paradigm are introduced in Section 2. The main part of this

work is Section 3, where the theoretical arguments of the test, jointly with the bootstrap calibration

procedure, are presented. The finite sample properties of the test are illustrated by a simulation

study in Section 4. Section 5 illustrates the application of the test to two datasets and introduces a

graphical tool to evaluate the goodness–of–fit of the functional linear model with scalar response.

Final comments and conclusions are given in Section 6. An appendix in supplementary materials,

available online, contains omitted proofs, tables and figures.

2 Background

The main goal of this paper is to propose a goodness–of–fit test for the null hypothesis of the

functional linear model with scalar response. Bearing in mind the different nature of the functional

variables, some background on functional data, the functional linear model and the use of random

projections is introduced.

3
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sa

nt
ia

go
 d

e 
C

om
po

st
el

a]
 a

t 0
8:

11
 2

1 
O

ct
ob

er
 2

01
3 



ACCEPTED MANUSCRIPT

2.1 Functional data

One of the first and most important problems when we deal with functional data is to choose a

suitable functional space to work. The most used functional spaces are the metric, the Banach and

the Hilbert spaces. This is a sequence of functional spaces with increasing richer structure, where

the tools available for the former space are included in the latter. Specifically, in a metric space

we can measure distances between functions; in addition, in a Banach space we can also measure

the functions and Cauchy sequences are convergent; and finally, in a Hilbert space we have inner

product, which allows to consider functional basis.

While there are a lot of types of metrics and norm spaces, theLp spaces are one of the most

used. TheLp[0,1] space, 1≤ p < ∞, is defined as the set of all functionsf : [0,1] → R such

that their norm|| f ||p =

(∫ 1

0
| f (t)|p dt

) 1
p

. is finite. The choice of the interval [0,1] is done only to

fix the integration limits and other intervals can be considered without major changes. The most

importantLp space corresponds top = 2, because is the only which has an associated inner product

〈∙, ∙〉 such that|| f ||p = 〈 f , f 〉
1
2 . For two functionsf ,g ∈ L2[0,1], their inner product is defined as

〈 f ,g〉 =
∫ 1

0
f (t)g(t) dt.

In what follows we will consider as our working space the Hilbert spaceH = L2[0,1], bearing

in mind that [0,1] can be trivially replaced by another interval. The inner product allows for a basis

representation of the elements ofH and, given a functional basis
{
Ψ j

}∞
j=1

of H, then any function

X in H can be expressed by the linear combinationX =
∑∞

j=1 xjΨ j, wherexj =
〈
X,Ψ j

〉
, j ≥ 1. A

basis is said to be orthogonal if
〈
Ψi ,Ψ j

〉
= 0, i , j and orthonormal if, in addition,

〈
Ψ j ,Ψ j

〉
= 1,

j ≥ 1. Typical examples of basis ofH are the Fourier basis{1, sin(2π jx) , cos(2π jx)}∞j=1 and the

B–splines basis (see de Boor (2001)).
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For the development of the test statistic, we will also need to introduce ap–truncated basis
{
Ψ j

}p

j=1
, which corresponds to the firstp elements of the infinite basis

{
Ψ j

}∞
j=1

. The representation

of X in this truncated basis is denoted byX(p) =
∑p

j=1 xjΨ j. The choice of the number of basis

elementsp is crucial to have a reliable representation of the functionX by X(p). Although there

exists several methods to select an appropriatep, we will refer to the GCV criteria (see Ramsay

and Silverman (2005), page 97) to selectp and represent adequately the functionX in {Ψi}
p
i=1. This

criteria will be used in Section 4.1 to select a suitablep for the case of the simple hypothesis.

To deal with functional random projections we will need to define the functional analogue

of the euclideanp–sphereSp = {x ∈ Rp : ||x||Rp = 1}. In the functional case we have thefunc-

tional sphereof H, defined asSH = { f ∈ H : || f ||H = 1}, and thefunctional sphere of dimension

p, which is the set of functions ofH that, expressed in thep–truncated basis, have unit norm:

Sp
H =

{
f =

∑p
j=1 xjΨ j ∈ H : || f ||H = 1

}
.

The relationship betweenSp andSp
H is particularly interesting to develop the test. Let beΨ =

(〈
Ψi ,Ψ j

〉)

i j
the matrix of inner products of thep–truncated basis,Sp

Ψ
=

{
x ∈ Rp : xTΨx = 1

}
the

p–ellipsoid generated by this matrix andRTR the Cholesky decomposition ofΨ (a semi–positive

matrix). First of all, we have the trivial isomorphism that maps elements ofSp
H to elements ofSp

Ψ
by

means of the functional coefficients:φ : f =
∑p

j=1 xjΨ j ∈ S
p
H 7→ φ( f ) = x ∈ Sp

Ψ
. Recall that func-

tionsφ andφ−1 are well defined because|| f ||2H =
〈∑p

j=1 xjΨ j ,
∑p

j=1 xjΨ j

〉
= xTΨx. We must consider

also a linear transformation fromSp to Sp
Ψ

, which is given byρ : x ∈ Sp 7→ ρ(x) = R−1x ∈ Sp
Ψ

and

whose Jacobian is|R|−1, the determinant of the matrixR−1.

Using these two transformations, the integration of a functional operatorT with respect to a
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functional covariateγ(p) in Sp
H can be reduced to a real integration on thep–sphere:

∫

S
p
H

T
(
γ(p)

)
dγ(p) =

∫

S
p
Ψ

T

( p∑

j=1

gjΨ j

)

dgp =

∫

Sp
|R|−1 T

( p∑

j=1

(
R−1g

)

j
Ψ j

)

dgp.

In the case where the basis is orthonormal,Ψ andR are the identity matrix of orderp. Then the

coefficients ofγ(p) ∈ Sp
H in the basis

{
Ψ j

}p

j=1
belong toSp without any transformation.

2.2 Functional linear model

Suppose thatX is a functional random variable inH and Y is a real random variable. If both

variables are centred, i.e.,E [X(t)] = 0 for a.e. t ∈ [0,1] andE [Y] = 0, the Functional Linear

Model (FLM) with scalar response claims for the following relation:

Y = 〈X, β〉 + ε =
∫
X(t)β(t) dt+ ε,

where the functional parameterβ belongs toH andε is a random variable with zero mean, variance

σ2 and such thatE [X(t)ε] = 0, ∀t. The prediction ofY is done with the conditional expectation of

Y givenX:

m(X) = E [Y|X] = 〈X, β〉 .

Saying that (X,Y) share the functional linear model is equivalent to saying that the regression func-

tion of Y onX, m, belongs to the familyM = {〈∙, β〉 : β ∈ H}.

Given a sample (X1,Y1), . . . , (Xn,Yn), the estimation of the functional parameter can be done

by minimising the Residual Sum of Squares (RSS):

β̂ = arg min
β∈H

n∑

i=1

(Yi − 〈Xi , β〉)
2 .

A possible method to search for the parameterβ that minimises the RSS is representing the func-
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tional data and the functional parameter in the truncated functional basis
{
Ψ j

}pX

j=1
and

{
θ j

}pβ

j=1
, re-

spectively:

X(pX)
i =

pX∑

j=1

ci jΨ j , β
(pβ) =

pβ∑

j=1

bjθ j , i = 1, . . . , n.

Using the vector notationX =
(
X(pX)

i

)
i, C = (ci j )i j , ψ = (Ψ j) j, b = (bj) j andθ = (θ j) j, the previous

representation can be expressed asX = Cψ andβ(pβ) = θTb. The functional linear model results in

Y = 〈X, β〉 + ε ≈ CJb + ε = Zb + ε, (1)

whereJ =
(〈
Ψi , θ j

〉)

i j
. Then, basis representation allows to express the FLM as a standard linear

regression, where the estimated coefficients ofβ in the basis
{
θ j

}pβ

j=1
are given bŷb = (ZTZ)−1ZTY.

Although different combinations of
{
Ψ j

}pX

j=1
and

{
θ j

}pβ

j=1
are possible, the usual choice is

{
Ψ j

}p

j=1
=

{
θ j

}p

j=1
, being

{
Ψ j

}p

j=1
an orthogonal basis because in that case the matrixJ is diagonal.

There are several alternatives to represent the functional process and estimate the parameter

β in a truncated basis. For instance, a general review of the estimation based on the use of basis

expansions such as Fourier series or B–splines can be found in the book by Ramsay and Silverman

(2005). The so called Functional Principal Component (FPC) regression estimation, proposed by

Cardot et al. (1999), provide an orthogonal data–driven basis that gives the most rapidly conver-

gent representation of the functional dataset predictor in aL2 sense (see Hall and Horowitz (2007)).

Preda and Saporta (2002) have proposed the Functional Partial Least Squares (FPLS) regression

method that produces iteratively a sequence of orthogonal functions, as the FPC are, but with max-

imum predictive performance. To implement any of the methods shown before, it is required to fix

the number of basis elements (or components) that are used in the estimation.

The optimal number of components,p, has to be fixed based on the information provided by
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the data. To do this, Hall and Hosseini-Nasab (2006) and Preda and Saporta (2002) use the predic-

tive cross–validation criterion (PCV), Cardot et al. (2003) and Ferraty and Romain (2011) consider

the generalized cross–validation criterion (GCV) and Chiou and Müller (2007) and Febrero-Bande

et al. (2010) consider those methods based on the AIC, AICc and BIC information approaches.

Let denote byŶ(p)
i =

〈
X(p)

i , β̂
(p)

〉
andŶ(p)

i,(−i) =
〈
X(p)

i , β̂
(p)
(−i)

〉
the prediction ofYi using p compo-

nents with the whole sample and with the whole sample excluding thei–th element, respectively.

The PCV is defined as:

PCV(p) = arg min
p

1
n

n∑

i=1

(
Yi − Ŷ(p)

i,(−i)

)2
,

which is computationally expensive because it involves the estimation of theβ̂
(p)
(−i) n times. This

is especially expensive in the case of data–driven basis (FPC, FPLS) because the basis has to be

recalculate for every datum. As an alternative, GCV avoids recalculating theβ̂(p) for every datum

by introducing a penalty term. The GCV is defined as

GCV(p) = arg min
p

∑n
i=1

(
Yi − Ŷ(p)

i

)2

n
(
1− df

n

) , (2)

whered f is the number of degrees of freedom consumed by the model, typically given by the

trace of the matrixZ. GCV is closely related with AIC, AICc and BIC although they come from

different perspectives.

2.3 Random projections

Random projections are becoming quite popular when dealing with high dimensional data, as a

way to overcome the well knowncurse of the dimensionality. The main idea behind is to reduce

the dimension, and characterize the original distribution of the multidimensional data by the dis-

tribution of the randomly projected univariate data.
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In the goodness–of–fit field, this is specially interesting, as the test procedures tend to become

less efficient, less powerful, when the dimension of the model increases. Escanciano (2006) used

this technique to develop a goodness–of–fit test for multivariate regression models based on ran-

dom projections. According to his simulation study, the test has an excellent power performance

and has the best empirical power for most situations when comparing to their competitors.

In the functional framework, it is also possible to consider random projections. Usually, this is

achieved by considering the inner product of the functional variableX ofH and a suitable family of

projectors, i.e. random functionsγ in H. For example, using with this approach Cuesta-Albertos et

al. (2007) developed some goodness–of–fit tests for parametric families of functional distributions,

which includes goodness–of–fit tests for Gaussianity and for the Black–Scholes model.

A very interesting result on projections can be found in Patilea et al. (2012). In their paper, the

authors provide a characterization of the conditional expectation of a scalar variableY with respect

to a functional variableX given in terms of the conditional expectation ofY with respect to the

projectedX. The result is stated here in the following lemma.

Lemma 1 (Patilea et al. (2012)). Let Y be a random variable andX a functional random variable

in the functional spaceH. The following statements are equivalent:

I. E [Y|X = x] = 0, for almost every (a.e.) x∈ H.

II. E
[
Y| 〈X, γ〉 = u

]
= 0, for a.e. u∈ R and∀γ ∈ SH.

III. E
[
Y| 〈X, γ〉 = u

]
= 0, for a.e. u∈ R and∀γ ∈ Sp

H, ∀p ≥ 1.
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3 The test

The presentation of the goodness–of–fit test that we propose in this paper is divided into three sec-

tions. The first and most important presents the theoretical fundamentals of the test, with starting

point in Lemma 2, which proof is detailed in the appendix. The second derives the effective im-

plementation of the test statistic in practise considering some geometrical and matrix arguments.

Finally, the bootstrap resampling for the calibration of the test statistic is presented in the last

section.

3.1 Theoretical arguments

Let Y be a real random variable andX a functional random variable in the spaceH. Given a random

sample{(Xi ,Yi)}
n
i=1, we are interested in checking if a functional linear model is suitable to explain

the relation between the functional covariate and the scalar response, i.e., test for the composite

hypothesis:

H0 : m ∈ {〈∙, β〉 : β ∈ H} ,

versus a general alternative of the formH1 : P {m < {〈∙, β〉 : β ∈ H}} > 0. Further, the simple

hypothesis, i.e. checking for a specific functional linear model:

H0 : m(X) = 〈X, β0〉 , for a fixedβ0 ∈ H,

is also of interest as it includes the important case of no interaction between the functional co-

variate and the scalar response (consideringβ0(t) = 0, ∀t). In what follows we will focus on the

procedure for the composite hypothesis, given that the simple is obtained just considering that the

functional parameter is known and substitutingβ̂ andβ̂(p) by β0 andβ(p)
0 , respectively.

The key point to test the null hypothesisH0 is the following lemma, an adaptation of the Lemma
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1 to our setting, which gives the characterization ofH0 in terms of the random projections ofX.

Lemma 2. Letβ be an element ofH. The following statements are equivalent:

I. m(X) = 〈X, β〉, ∀X ∈ H.

II. E
[
Y− 〈X, β〉 |X = x

]
= 0, for a.e. x∈ H.

III. E
[
Y− 〈X, β〉 | 〈X, γ〉 = u

]
= 0, for a.e. u∈ R and∀γ ∈ SH.

IV. E
[
Y− 〈X, β〉 | 〈X, γ〉 = u

]
= 0, for a.e. u∈ R and∀γ ∈ Sp

H, ∀p ≥ 1.

V. E
[
(Y− 〈X, β〉)1{〈X,γ〉≤u}

]
= 0, for a.e. u∈ R and∀γ ∈ SH.

VI. E
[
(Y− 〈X, β〉)1{〈X,γ〉≤u}

]
= 0, for a.e. u∈ R and∀γ ∈ Sp

H, ∀p ≥ 1.

Then H0 is characterized by the null value of the momentE
[
(Y− 〈X, β〉)1{〈X,γ〉≤u}

]
, for a.e.

u ∈ R and∀γ ∈ SH (or ∀γ ∈ Sp
H, ∀p ≥ 1) and a possible way to measure the deviation of the data

from H0 is by the empirical process arising from the estimation of this moment:

Rn(u, γ) = n−
1
2

n∑

i=1

(
Yi −

〈
Xi , β̂

〉)
1{〈Xi ,γ〉≤u}, (3)

that will be denoted as theResidual Marked empirical Process based on Projections(RMPP). The

marks of (3) are given by the residuals
{
Yi −

〈
Xi , β̂

〉}n
i=1 and the jumps by the projected functional

regressor in the directionγ, {〈Xi , γ〉}
n
i=1. The estimation ofβ can be done by different methods as

described in Section 2. Note that the RMPP only depends on the residuals of the model considered

(in this case the residuals of the FLM) and therefore it can be easily extended to other regression

models (see Section 6 for discussion).

To measure the distance of the empirical process (3) from zero, two possibilities are the

classical Craḿer–von Mises and Kolmogorov–Smirnov norms, adapted to theprojectedspace
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Π = R × SH:

PCvMn =

∫

Π

Rn(u, γ)
2 Fn,γ(du)ω(dγ), (4)

PKSn = sup
(u,γ)∈Π

|Rn(u, γ)| , (5)

whereFn,γ is the empirical cumulative distribution function (ecdf) of the projected functional data

in the directionγ (i.e. the ecdf of the data{〈Xi , γ〉}
n
i=1) andω represents a measure onSH. Un-

fortunately, the infinite dimension of the spaceSH makes infeasible to compute the functionals (4)

and (5) and some kind of discretization is needed. A solution to this problem is to consider the

properties of the Hilbert spaceH and use a basis representation.

Up to this end, let us introduce some notation. Let
{
Ψ j

}∞
j=1

be a basis ofH and consider the

p–truncated basis
{
Ψ j

}p

j=1
, with matrix of inner productsΨ. Denote byX(p)

i andγ(p) the represen-

tation of the functionsXi andγ in the p–truncated basis, with vectors of coefficientsxi,p andgp,

respectively, and fori = 1, . . . , n. Using this, as
{
Ψ j

}∞
j=1

is any basis, we have that

〈
X(p)

i , γ
(p)

〉
= xT

i,pΨ gp.

By analogy with the previously definedFn,γ, we will denoteFn,γ(p) to the ecdf of the projected

functional data expressed in thep–truncated basis, both for the projectorγ and for the functional

data. Then, the RMPP can be expressed in terms of ap–truncated basis, yielding

Rn,p

(
u, γ(p)

)
= n−

1
2

n∑

i=1

(
Yi − xT

i,p Ψ bp

)
1{

xT
i,p Ψ gp≤u

} = Rn,p

(
u,gp

)
,

wherebp represents the coefficients ofβ̂ in the p–truncated basis
{
Ψ j

}p

j=1
.

Bearing in mind this, our test statistic propose is a modified version of (4) that results from
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expressing all the functions in ap–truncated basis ofH:

PCvMn,p =

∫

S
p
H×R

Rn,p

(
u, γ(p)

)2
Fn,γ(p) (du)ω(dγ(p)). (6)

We have decided to choose the Cramér–von Mises statistic because, as we will see, presents impor-

tant computational advantages and can be adapted to the given framework of Escanciano (2006)

for the finite dimensional case. The most important advantage is that we can derive an explicit

expression where there is no need to compute the RMPP for different projections, property that

does not hold for the Kolmogorov–Smirnov statistic.

Using that the integration in thep–sphere ofH can be expressed as the integration in thep–

sphere ofRp via the transformations defined in Section 2.1, we have:

PCvMn,p =

∫

S
p
Ψ
×R

Rn,p(u,gp)
2 Fn,gp(du)ω(dgp)

=

∫

Sp×R
|R|−1 Rn,p(u,R−1gp)

2 Fn,R−1gp
(du)ω(dgp)

=

∫

Sp×R
|R|−1


n
− 1

2

n∑

i=1

(
Yi − xT

i,pΨ bp

)
1{

xT
i,p RT gp≤u

}




2

Fn,R−1gp(du)ω(dgp), (7)

whereω now represents a measure in thep–sphereSp that, for simplicity purposes, will be con-

sidered as the uniform distribution onSp.

Essentially, what we have done is to treat the functional process as ap–multivariate process,

expressing the functions in a basis ofp elements. The methods to choose the number of elements

p and to estimate the parameterβ both for the simple and for the composite hypothesis are the ones

introduced in Section 2. These methods will be illustrated in Section 4.
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3.2 Implementation

Following the steps of Escanciano (2006) it is possible to derive a simpler expression for (7).

Using the definition of the RMPP in ap–truncated basis, the fact thatFn,R−1gp
is the ecdf of

{
xT

i,pΨR−1gp
}n
i=1 =

{
xT

i,pR
Tgp

}n
i=1 and some simple algebra, we have:

PCvMn,p =

∫

Sp×R
|R|−1 Rn,p(u,R−1gp)

2 Fn,R−1gp
(du) dgp

= n−1
n∑

i=1

n∑

j=1

ε̂i ε̂ j

∫

Sp×R
|R|−11{

xT
i,pRTgp≤u

}1{
xT

j,pRTgp≤u
} Fn,R−1gp(du) dgp

= n−2
n∑

i=1

n∑

j=1

n∑

r=1

ε̂i ε̂ jAi jr ,

with ε̂i = Yi −
〈
X(p)

i , β̂
(p)〉. The termsAi jr represent the integrals

Ai jr =

∫

Sp
|R|−11{

xT
i,pRTgp≤xT

r,pRTgp

}1{
xT

j,pRTgp≤xT
r,pRTgp

} dgp

=

∫

Sp
|R|−11{(Rxi,p−Rxr,p)Tgp≤0, (Rx j,p−Rxr,p)Tgp≤0} dgp

= |R|−1

∫

Si jr

dgp,

whereSi jr =
{
ξ ∈ Sp : π2 ≤ ]

(
x′i,p − x′r,p, ξ

)
≤ 3π

2 ,
π
2 ≤ ]

(
x′j,p − x′r,p, ξ

)
≤ 3π

2

}
and] (a,b) represents

the angle between vectorsa andb. To simplify notation, we denotex′k,p = Rxk,p (x′k,p = xk,p if

the basis is orthonormal) fork = 1, . . . , n. Depending onx′i,p, x
′
j,p, x

′
r,p, the regionSi jr can be the

whole sphereSp (x′i,p = x′j,p = x′r,p), a hemisphere ofSp (x′i,p = x′j,p, x′i,p = x′r,p or x′j,p = x′r,p) or a

spherical wedge (see Figure B1 in appendix) of width angle given by
∣∣∣∣∣∣∣
π − arccos




(x′i,p − x′r,p)
T(x′j,p − x′r,p)

||x′i,p − x′r,p|| ∙ ||x
′
j,p − x′r,p||




∣∣∣∣∣∣∣
. (8)

ThusAi jr is the product of the surface area of a spherical wedge of angleA(0)
i jr times|R|−1, and
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is given by

Ai jr = A(0)
i jr

πp/2−1

Γ
(

p
2

) |R|−1 , A(0)
i jr =





2π, x′i,p = x′j,p = x′r,p,

π, x′i,p = x′j,p, x
′
i,p = x′r,p or x′j,p = x′r,p,

(8), else.

We also have a symmetric property,Ai jr = Ajir , which simplifies the evaluation of the test statis-

tic from O(n3) to O
(
(n3 + n2)/2

)
computations. The memory requirement is expensive, because

we need to store the (n3 + n2)/2 elements of the three dimensional arrayA, which is symmetric

in its two first indexes. However, this requirement can be stretched if we consider the following

expression for the statistic:

PCvMn,p = n−2ε̂TA•ε̂, (9)

whereA• =
(∑n

r=1 Ai jr

)

i j
is an× n matrix andε̂ is the vector of the residuals. By the definition of

A(0)
i jr and its symmetry in the first two entries, the matrixA• is symmetric and its diagonal terms are

given by (n+ 1)π. Although the order of computations remains similar,O
(
(n3 − n2)/2

)
, the mem-

ory required for storing the matrixA• is substantially lower and drops to (n2 − n+ 2)/2 elements.

This fact improves drastically the time of computation of the statistic and allows to apply the test

to larger datasets.

Again, let us remark that the expression derived for the PCvMn,p statistic remains valid for any

functional regression model with scalar response and not just for the FLM, as the expression is

based on the residuals of the model.

3.3 Bootstrap resampling

To calibrate the distribution of the statistic PCvMn,p under the null hypothesis, a wild bootstrap on

the residuals is applied. This bootstrap procedure is consistent in the finite dimensional case, as

15
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sa

nt
ia

go
 d

e 
C

om
po

st
el

a]
 a

t 0
8:

11
 2

1 
O

ct
ob

er
 2

01
3 



ACCEPTED MANUSCRIPT

it was shown in Stute et al. (1998), and is adequate to situations with potential heterocedasticity,

quite common in functional data. The resampling process for the case of the composite hypothesis,

given an initial estimation̂β(p) of the functional parameter, is the following:

I. Construct the estimated residuals: ˆεi = Yi −
〈
X(p)

i , β̂
(p)

〉
, i = 1, . . . , n.

II. Draw independent random variablesV∗1, . . . ,V
∗
n satisfyingE∗

[
V∗i

]
= 0 andE∗

[
V∗2i

]
= 1. For

example, ifV∗ is a discrete random variable with distribution weightsP
{
V∗ = 1−

√
5

2

}
= 5+

√
5

10

P
{
V∗ = 1+

√
5

2

}
= 5−

√
5

10 , we have thegolden section bootstrap.

III. Construct the bootstrap residualsε∗i = V∗i ε̂i , i = 1, . . . , n.

IV. SetY∗i =
〈
X(p)

i , β̂
(p)

〉
+ ε∗i , i = 1, . . . , n and estimateβ∗,(p) for the sample

{(
Xi ,Y∗i

)}n

i=1
.

V. Obtain the estimated bootstrap residuals ˆε∗i = Y∗i −
〈
X(p)

i , β̂
∗,(p)

〉
, i = 1, . . . , n.

Then, the procedure to calibrate the test is the following. In step I we compute the test statistic

with the residuals underH0 using the implementation (9) of the previous section. Then repeat steps

II–V for b = 1, . . . , B, computing each time the bootstrap statistic PCvM∗,b
n,p = n−2ε̂∗,b,TA•ε̂∗,b and

estimate thep–value of the test by Monte Carlo: #
{
PCvMn,p ≤ PCvM∗,bn,p

}
/B. For computational

efficiency, it is important to note that we do not have to compute again the matrixA• in the boot-

strap replicates.

A very interesting fact of the FLM is that step V can be easily performed using the properties

of the estimation of̂β(p). From (1) it is clear that the vector of coefficients ofβ̂(p) is estimated

throughoutb̂ =
(
ZTZ

)−1
ZTY. Then, the estimated bootstrap residuals, represented by the vector

ε̂∗, can be obtained aŝε∗ =
(
I p − Z

(
ZTZ

)−1
ZT

)
Y∗, whereY∗ is the vector of bootstrap responses

given in step IV andI p is the identity matrix of orderp. The projection matrix
(
I p − Z

(
ZTZ

)−1
ZT

)

remains the same for all the bootstrap replicates, so it can be stored without the need of computing
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it again. Obtaining the residuals in this way implies a significative computational saving.

The bootstrap resampling in the case of the simple hypothesis is easier: just replaceβ̂(p) by β(p)
0

and omit steps IV and V, considering ˆε∗i = ε
∗
i , i = 1, . . . , n.

4 Simulation study

To illustrate the finite sample properties of the proposed test, a simulation study was carried out for

the simple and the composite hypotheses. The functional process considered for the functional co-

variateX is an Ornstein–Uhlenbeck process in [0,1], which corresponds to a Brownian motion with

functional meanμ and covariance function given by Cov(X(s),X(t)) = σ2

2θe
−θ(s+t)

(
e2θmin(s,t) − 1

)
.

We have consideredθ = 1
3, σ = 1 and the functional meanμ(t) = 0, ∀t ∈ [0,1]. See Figure B2 in

appendix for further details.

All the functional data in this simulation study is represented in 201 equidistant points in the

interval [0,1]. The number of bootstrap replicates considered isB = 1000 and the number of

Monte Carlo replicates for determining the empirical sizes and powers,M = 1000. The sample

size, except otherwise stated, isn = 100. Lastly, in order to properly compare the effect of the kind

of basis, the number of elements and the sample sizes, the initial seed for the random generation

of the functional underlying process is the same for each model.

Several lengthy tables have been reduced in this section for space saving. The reader is referred

to the appendix in supplementary materials to see the whole tables as well as other explanatory

figures.
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4.1 Testing for simple hypothesis

The simulation study for the simple hypothesis is centred on the caseH0 : m(X) = 〈X, β0〉, where

β0(t) = 0, t ∈ [0,1]. This is equivalent to test that the functional covariateX has no effect on

the scalar response, i.e., test the null hypothesisH0 : m(X) = 0. Although there is an extensive

collection of goodness–of–fit tests for finite dimensional covariates (see González-Manteiga and

Crujeiras (2011)), the literature for the case of functional covariates is more limited. Therefore,

we will focus on the competing procedures of Delsol et al. (2011) and González-Manteiga et al.

(2012) to compare the different tests in terms of level and power. Let us describe briefly these two

test statistics.

Delsol et al. (2011) propose a test statistic forH0 : m(X) = m0(X), deriving its asymptotic law

and giving a bootstrap procedure based on the residuals. The statistic, inspired by the proposal of

Härdle and Mammen (1993), is

Tn =

∫ 


n∑

i=1

(Yi −m0(Xi))K

(
d(X,Xi)

h

)

2

ω(X)dPX(X),

whereK is a kernel function,d is a semimetric andh is the bandwidth parameter.PX represents

the probability distribution of the functional process andω is a suitable weight function. The test

used in our implementation results from considering no functional effect, i.e.H0 : m0(X) = 0, and

from approximating the integral with respect todPX by the empirical mean of the sample. We have

also considered the kernelK(t) = 2φ(|t|), t ∈ R, beingφ the density of aN(0,1), theL2 distance in

H for d and the uniform weight function. The bandwidth parameter is given by the PCV criterion

and bootstrap resampling was done using golden wild bootstrap.

The other competing test is the one proposed by González-Manteiga et al. (2012) and is based
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on the idea of extending the covariance to functional–scalar data:

Dn =

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

1
n

n∑

i=1

(
Xi − X̄

) (
Yi − Ȳ

)
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
H

,

whereX̄ is the functional mean of{Xi}
n
i=1 and isȲ the usual scalar mean of{Yi}

n
i=1. The authors

extend the ideas of the classicalF–test to the functional framework, resulting a statistic to test the

null hypothesis of no interactioninsidethe functional linear model. The test is consistent and the

authors derived the asymptotic distribution of the process1
n

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
, resulting in a

Brownian motion with meanE
[
(X − μX)(Y− μY)

]
and a particular covariance structure. This test

can be viewed as a possible benchmark in our simulation study and, recalling its similarity with

the classicalF–test, will be denoted as thefunctional F–test. The bootstrap resampling was also

performed using golden wild bootstrap.

Three different blocks of deviations from the null are considered. The first two blocks represent

a deviation inside the linear model, i.e., considering different functionsβ j,k, j = 1,2, k = 1,2,3, in-

stead ofβ0. The linear functions areβ1,k(t) = γk ∙(t−0.5), with coefficientsγ1 = 0.25,γ2 = 0.65 and

γ3 = 1.00 forH1,k andβ2,k(t) = ηk ∙sin(2πt3)3, with η1 = 0.10,η2 = 0.20 andη3 = 0.50 forH2,k. The

second block of deviations from the null hypothesis consists on adding asecond orderterm〈X,X〉

to the regression function, thus the model is no longer linear. Different weights for the second term

are represented in the alternativesH3,k : Y = 〈X, β0〉 + δk 〈X,X〉 + ε, whereδ1 = 0.005,δ2 = 0.010

andδ3 = 0.015. The relation between the variance of the response with respect to the variance of

the error can be measured by thesignal–to–noise ratio: snr = E
[
m(X)2

]
/(E

[
m(X)2

]
+ σ2). For

block 1 the snr’s of the alternatives are 0.044, 0.235 and 0.421, respectively forH1,k, k = 1,2,3.

For block 2, the snr’s are 0.019, 0.150 and 0.329. For block 3, we have 0.015, 0.086 and 0.272.

In the case of the simple hypothesis there is no estimation of the parameterβ0, as it is known.

However, it is necessary to express the functional processp and the functionβ0 in a suitable basis
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in order to compute the test statistic. To this end, we consider a B–splines basis and we choose

automatically its number of elements by the GCV criteria commented in Section 2.1.

The results of the study for the simple hypothesis are collected in Table 1, which shows the

empirical sizes and powers of the functionalF–test, the test of Delsol et al. and the PCvM test

for simple hypothesis, for the models previously commented. All of the tests seem to calibrate

the significance levelα = 0.05. With respect to the power, the functionalF–test has in average

a superior behaviour in the alternativesH2,k, which represents deviations from the nullinsidea

linear model. The test of Delsol et al. performs also well with the cross–validatory bandwidth,

being the most competitive for the blockH1,k. The PCvM test has lower power than the functional

F–test for alternativesH1,k andH2,k and similar or lower power to the test of Delsol et al., which

is in part favoured by an over–rejection of the null hypothesis. Nevertheless, for alternatives that

are not inside the linear model, the PCvM test results the most powerful. MetricsL1, L∞ and four

L2–based semi–metrics were considered also for the test of Delsol et al., without obtaining better

results than with theL2 metric. Similar results are obtained with a noise given by a recentred

exponential distribution with parameterλ = 10.

4.2 Testing for composite hypothesis

To see the performance of the test under the composite hypothesisH0 : m ∈ {〈∙, β〉 : β ∈ H} we

have considered three different null models of the form

Hj,0 : Y =
〈
X, β j

〉
+ ε, (10)

with j = 1,2,3 being the index of the three different models. The functional coefficients of the

three FLM areβ1(t) = sin(2πt)− cos(2πt), β2(t) = t− (t − 0.75)2 andβ3(t) = t+ cos(2πt), t ∈ [0,1].

The second functional coefficient is chosen to be perfectly described by B–splines, whereas this is
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not the case forβ1 andβ3.

In order to check the power performance of the test, a set of possible deviations from the linear

regression model is considered. Again, a second order term〈X,X〉 is introduced to transform the

model into a non–linear one. Three different weights for this term are considered, representing the

alternativesHj,k:

Hj,k : Y =
〈
X, β j

〉
+ δk 〈X,X〉 + ε. (11)

The index for the model is denoted byj = 1,2,3 andk = 1,2,3 is the index that measures the

degree of the deviation from the null hypothesis. The weights of the quadratic term areδ1 = 0.01,

δ2 = 0.05 andδ3 = 0.10. The snr’s for model 1 are 0.823, 0.824, 0.834 and 0.861, respectively

for H1,k, k = 0,1,2,3. For model 2, 0.949, 0.949, 0.950 and 0.953. For model 3, we have 0.971,

0.971, 0.971 and 0.972.

Three estimation methods for the functional parameterβ will be considered. All of them are

designed in order to provide automatic selectors of the number of elements considered in the basis

estimation ofβ. So, the first automatic method considered is the estimation ofβ as a linear com-

bination of a B–splines basis ofp elements, wherep is chosen by the GCV criteria (2). Secondly,

FPC estimation relies on the BIC criteria to choose the optimal number of elements in the FPC

basis derived from the process to estimateβ. Finally, the FPLS method also uses PCV to select the

adequate number of elements in the FPLS basis derived from the joint sample{(Xi ,Yi)}
n
i=1.

Table 2 shows the rejection frequencies of the null hypothesis for the test computed from ob-

servations of the null hypotheses (10) and deviations (11), for the significance levelα = 0.05.

The rejection rates were computed for the three types of estimation of the functional coefficient

and basis representation, in order to see the possible effects of the estimation method in the power

21
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sa

nt
ia

go
 d

e 
C

om
po

st
el

a]
 a

t 0
8:

11
 2

1 
O

ct
ob

er
 2

01
3 



ACCEPTED MANUSCRIPT

performance. At sight of the rejection frequencies for the three models, several comments must be

done. Firstly, the test respects the significance levels for the null hypothesis for the three estimation

methods considered. Secondly, there seems to be no big differences in terms of power for the three

methods, although it can be observed that the FPC and FPLS estimation methods are slightly more

conservative. Finally, at sight of the similarities between the response under the null and under the

alternatives (see Figure B4 in appendix), the results of Table 2 point toward a quite competitive

test. Similar results are obtained with a non symmetric random noise.

The behaviour of the test for different sample sizes is shown in Table 3. As in the previous

tables, the three estimating methods have very similar rejection ratios and we can see that B–

splines estimation has again larger rejection ratios for all the models. As expected, when the

sample sizes increases, the rejection rates also do.

5 Data application and graphical tool

The Tecator dataset is a well known dataset in the literature of functional data analysis (see, for

example, Ferraty and Vieu (2006)). It contains data from 215 meat samples, consisting of a 100

channel spectrum of absorbances measured by a spectrometer and the contents of water, fat and

protein. When trying to explain the content of fat in the meat samples throughout the spectrometric

curves, it is common to transform the original curves into the first derivatives or the second deriva-

tives, in order to properly capture the wavy effects of the meat samples with high percentage of fat

(see the left plot of Figure 1).

We have applied our goodness–of–fit test withB = 5000 bootstrap replicates for the original

dataset and for the dataset of the first and second derivatives. Thep–values obtained are 0.004,

0.000 and 0.000, respectively. Thus we have significative evidences against the null hypothesis

of FLM. The test was applied with the FPLS estimation method and with automatic selection of
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the number of FPLS by PCV. As the case of no interaction is a particular case of a FLM, we can

conclude that in the Tecator dataset there exists a significative dependence between the functional

covariate and the scalar response, although this dependence is not a linear one.

The other dataset considered is the AEMET dataset, which is available in theR package

fda.usc (see Febrero-Bande and Oviedo de la Fuente (2012)). It is formed by the daily sum-

maries of 73 Spanish weather stations during the period 1980–2009. Among others, the functional

covariate is the daily temperature in each weather station, and the scalar response is the daily wind

speed (both variables are averaged over 1980–2009). The center plot of Figure 1 represents the

functional observations of the daily temperature. Before applying the tests, four functional outliers

corresponding to the 5% less depth curves according to the Fraiman and Muniz (2001) depth were

removed.

The resultingp–value from the goodness–of–fit test is 0.121, thus there is no significative ev-

idences to reject the null hypothesis of the FLM for the AEMET dataset. The test is applied with

the FPLS estimation method and withB = 5000 bootstrap replicates. The right plot of Figure 1

shows the estimated functional parameterβ, resulting from a basis of 2 FPLS. Once we have deter-

mined that the FLM is a suitable model, we can check if the estimated coefficientβ is significantly

different from zero with the available tests for the simple hypothesis: the functionalF–test, the test

of Delsol et al. (with PCV bandwidth) and our test for the simple null hypothesis of no interaction.

The p–values obtained are: 0.002, 0.000 and 0.000, respectively. All the tests reject the null, so

we can conclude that the curves of the temperature and the average wind speed show a non–trivial

linear relation.

We conclude this section showing a graphical tool to visualize the goodness–of–fit of the FLM

to a dataset that can be useful to practitioners. The key idea is to compare graphically the process

(3) obtained with the residuals of the fitted model with the processes obtained with the bootstrapped
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residuals under the null hypothesis. The path of the RMPP depends on the random projectionsγ

and therefore it is difficult to compare two trajectories of the process. However, integrating with

respect toγ results a process that does not depend on the projections. Further, this integration is

easily approximated by Monte Carlo:

Rn(u) =
∫

SH

Rn(u, γ)ω(dγ) ≈
1
G

G∑

g=1

Rn(u, γg),

beingγg functions inSH andG the number of Monte Carlo replicates. Forγg, a possibility is

to consider stationary Gaussian processes with unit norm. Figure 2 shows the comparison of the

observed processRn and B = 100 bootstrapped processes under the null, for the two studied

datasets. Consistently with the obtainedp–values, the observed processes for the Tecator dataset

seem to be significantly different, whereas for the AEMET dataset the observed process is just an

ordinary trajectory of the bootstrapped ones.

6 Conclusions

We have presented a goodness–of–fit test for the null hypothesis of the functional linear model.

The test is constructed adapting the propose of Escanciano (2006) to the functional scheme using

a basis representation. Different estimation methods for the functional parameter were considered,

showing in general a similar behaviour in the performance of the test. The simulation study shows

that the test behaves well in practise: respects the significance level and has good power. The test

was applied to two real datasets to determine if the FLM was plausible, rejecting the null hypoth-

esis for the first and finding no evidences for rejecting in the second.

The asymptotic distribution of the statistics PCvMn and PCvMn,p, quadratic functionals of the

processesRn andRn,p, respectively, is an open problem. The convergence of both processes re-

mains as a problem of great relevance to be considered in the future, taking into account that these
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processes are indexed inR×H and that it does not exist, up to our knowledge, any results of weak

functional convergence of empirical processes indexed in infinite dimensional spaces.

Although in this paper we have focused on the functional linear model, the proposed test can be

extended to checking for any other regression model with functional covariate and scalar response.

As the statistic is based on the residuals, the practical implementation and the wild bootstrap cal-

ibration given in Section 3 will remain the same: we just have to consider suitable estimators for

the parameters of the regression model to compute the residuals. Therefore, obvious extensions

could be the testing of FLM with several covariates or the testing of the quadratic functional model.

Finally, let us remark that the code for the implementation of the goodness–of–fit test in

the simple and composite cases is available throughout the functionflm.test of the R library

fda.usc since version 0.9.8. This function also shows the graphical tool introduced in Section 5.

To speed up the computation of the test statistic, the critical parts of the test implementation have

been programmed in FORTRAN.

SUPPLEMENTAL MATERIALS

Appendix: Contains the proof of Lemma 2, explaining figures and more detailed tables for the

results of the simulation study. (pdf file)

R-package forflm.test, flm.Ftest and dfv.test routines: R-packagefda.usc containing

code to perform the testing methods described in the article. The package also contains the

AEMET and Tecator datasets used as examples in the article. (GNU zipped tar file)
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Models F–test PCvM Delsol etal. F–test PCvM Delsol etal.
H0 0.060 0.041 0.065 0.043 0.051 0.066
H1,1 0.060 0.069 0.098 0.056 0.052 0.072
H1,2 0.163 0.078 0.309 0.180 0.085 0.285
H1,3 0.401 0.138 0.772 0.442 0.166 0.719
H2,1 0.248 0.053 0.080 0.265 0.071 0.089
H2,2 0.951 0.336 0.403 0.932 0.343 0.420
H2,3 1.000 0.904 0.877 0.999 0.901 0.848
H3,1 0.034 0.173 0.165 0.052 0.125 0.128
H3,2 0.038 0.691 0.554 0.034 0.721 0.558
H3,3 0.019 0.998 0.932 0.012 1.000 0.967

Table 1: Empirical power of the competing tests for the simple hypothesisH0 : m(X) = 〈X, β0〉, β0(t) =

0, ∀t and significance levelα = 0.05. Noise follows aN(0, 0.102) and a recentred Exp(10).
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Models B–splines FPC FPLS B–splines FPC FPLS
H1,0 0.061 0.052 0.059 0.039 0.046 0.046
H1,1 0.094 0.082 0.078 0.074 0.072 0.077
H1,2 0.747 0.732 0.715 0.737 0.721 0.720
H1,3 0.997 0.997 0.996 0.996 0.997 0.996
H2,0 0.058 0.045 0.050 0.041 0.035 0.033
H2,1 0.086 0.071 0.074 0.081 0.080 0.078
H2,2 0.745 0.722 0.720 0.743 0.724 0.718
H2,3 0.997 0.996 0.997 0.994 0.995 0.994
H3,0 0.054 0.046 0.044 0.052 0.040 0.038
H3,1 0.082 0.077 0.075 0.072 0.062 0.062
H3,2 0.764 0.752 0.750 0.735 0.737 0.721
H3,3 0.999 0.998 0.998 0.998 0.998 0.997

Table 2:Empirical power of the PCvM test for the composite hypothesisH0 : m ∈ {〈∙, β〉 : β ∈ H} and for
three estimating methods ofβ at significance levelα = 0.05 with noiseN(0,0.102) (first three columns) and
recentred Exp(0.10) (last three).
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H1,0 H1,1 H1,2 H1,3
Method 50 100 200 50 100 200 50 100 200 50 100 200
B–spline 0.076 0.061 0.062 0.093 0.094 0.121 0.484 0.747 0.966 0.900 0.997 1.000

FPC 0.059 0.052 0.059 0.064 0.082 0.123 0.442 0.732 0.963 0.893 0.997 1.000
FPLS 0.062 0.059 0.058 0.069 0.078 0.115 0.414 0.715 0.961 0.873 0.996 1.000

Table 3:Empirical power of the PCvM test for the composite hypothesisH0 : m ∈ {〈∙, β〉 : β ∈ H} and for
different sample sizesn. Noise is aN(0, 0.102).
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Figure 1: From left to right: Tecator dataset with spectrometric curves coloured according to their
content of fat (red for larger and blue for lower); AEMET temperatures for the 73 Spanish weather
stations; estimated functional coefficient by the FPLS method for the AEMET dataset.
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Figure 2:Rn process observed (solid line) andB = 100 generated process under the null hypothesisH0 :
m ∈ {〈∙, β〉 : β ∈ H} (dashed lines), for the Tecator dataset (left) and the AEMET dataset (right). The number
of Monte Carlo replicates for the projections isG = 200.
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