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Abstract

In this work, a goodness—offit test for the null hypothesis of a functional linear model with
scalar response is proposed. The test is based on a generalization to the functional framework
of a previous one, designed for the goodness—of—fit of regression models with multivariate
covariates using random projections. The test statistic is easy to compute using geometrical
and matrix arguments, and simple to calibrate in its distribution by a wild bootstrap on the
residuals. The finite sample properties of the test are illustrated by a simulation study for
several types of basis and unddifelient alternatives. Finally, the test is applied to two datasets
for checking the assumption of the functional linear model and a graphical tool is introduced.
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1 Introduction

Functional data analysis has grown in popularity for the last years due to the increasingly data
availability for continuous time processes. Typical examples of functional data include the temper-

ature evolution, stock prices and path trajectories for objects in movement. New statistical methods
have been developed to deal with the richer nature of functional data, being Ramsay and Silverman
(2005), Ferraty and Vieu (2006) and Ferraty and Romain (2011) some of the main reference books

in this area.

In many situations, the functional data is related to a scalar variable. For this cases, it is inter-
esting to assess the relation of the variables via a regression model, which can be used to predict
the scalar response from the functional input. Analogue to the multivariate situation, the simplest
functional regression model corresponds to the functional linear model with scalar response (see

Ramsay and Silverman (2005) for a review).

An interesting methodology approach to deal with functional data is the use of random pro-
jections. The objective is to characterize the behaviour of a functional process, which has infinite
dimension, via the behaviour of the one dimensional inner products of the functional process with
suitable random functions. This method has interesting applications for the goodness—of—fit of
the distribution of the process, as it can be seen in Cuesta-Albertos et al. (2007). More recently,
Patilea et al. (2012) provide a projection—based test for functional covafiatt m a functional
regression model with scalar response. In their paper, the authors adapt the tests of Zheng (1996)
and Lavergne and Patilea (2008), based on smoothing techniques, to the context of functional co-

variates.

In this work, a first goodness—offit test for the null hypothesis of the functional linear model,
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Ho : me {(-,B8) : B € H}, beingH the Hilbert space of square integrable functions, is proposed. The
statistic test is of a Craér—von Mises type and is based on a generalization of a previous test of
Escanciano (2006), designed for the case of a regression model with multivariate covariates. The
test statistic is easy to compute using geometrical arguments and simple to calibrate in its distri-
bution by a wild bootstrap on the residuals. Further, although the test is given for the functional
linear model, it can be extended to other functional models with scalar response, as it is based on

the residuals of the model.

This work is organized as follows. Some background on functional data, the functional linear
model and the random projections paradigm are introduced in Section 2. The main part of this
work is Section 3, where the theoretical arguments of the test, jointly with the bootstrap calibration
procedure, are presented. The finite sample properties of the test are illustrated by a simulation
study in Section 4. Section 5 illustrates the application of the test to two datasets and introduces a
graphical tool to evaluate the goodness—of-fit of the functional linear model with scalar response.
Final comments and conclusions are given in Section 6. An appendix in supplementary materials,

available online, contains omitted proofs, tables and figures.

2 Background

The main goal of this paper is to propose a goodness—of—fit test for the null hypothesis of the
functional linear model with scalar response. Bearing in mind theréint nature of the functional
variables, some background on functional data, the functional linear model and the use of random

projections is introduced.
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2.1 Functional data

One of the first and most important problems when we deal with functional data is to choose a
suitable functional space to work. The most used functional spaces are the metric, the Banach and
the Hilbert spaces. This is a sequence of functional spaces with increasing richer structure, where
the tools available for the former space are included in the latter. Specifically, in a metric space
we can measure distances between functions; in addition, in a Banach space we can also measure
the functions and Cauchy sequences are convergent; and finally, in a Hilbert space we have inner

product, which allows to consider functional basis.

While there are a lot of types of metrics and norm spacesl|_frepaces are one of the most
used. The.P[0, 1] space, 1< p < oo, is defined as the set of all functioris: [0,1] — R such
that their norm(|f||, = (fol|f(t)|rJ dt)% . is finite. The choice of the interval [Q@] is done only to
fix the integration limits and other intervals can be considered without major changes. The most
importantLP space corresponds o= 2, because is the only which has an associated inner product

(-,-) such that|f||, = (f, f)é. For two functionsf, g € L?[0, 1], their inner product is defined as

1
(f.g) = fo F(Og() dt

In what follows we will consider as our working space the Hilbert sgéce L?[0, 1], bearing
in mind that [Q 1] can be trivially replaced by another interval. The inner product allows for a basis
representation of the elementsifand, given a functional bas[ﬂ’j}‘;il of H, then any function
X in H can be expressed by the linear combinatior: Y7, X%}, wherex; = (X, %)), j = 1. A
basis is said to be orthogonal(ﬁ’i,‘P,) = 0,1 # j and orthonormal if, in additior(,‘I’,-,‘I’,-) =1,
j = 1. Typical examples of basis &f are the Fourier basid, sin(2rjx), cos(2rjx)}i2; and the

B—splines basis (see de Boor (2001)).
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For the development of the test statistic, we will also need to introdyserancated basis
{‘P,-}J',O:l, which corresponds to the firptelements of the infinite bas[ﬁ’j};. The representation
of X in this truncated basis is denoted A{P = 37, x;¥;. The choice of the number of basis
elementsp is crucial to have a reliable representation of the funcfiony X(P. Although there
exists several methods to select an appropiatee will refer to the GCV criteria (see Ramsay
and Silverman (2005), page 97) to selpeind represent adequately the functiom {¥;},. This

criteria will be used in Section 4.1 to select a suitgbfer the case of the simple hypothesis.

To deal with functional random projections we will need to define the functional analogue

of the euclidearmp—sphereSP = {x € RP : ||X|lzr = 1}. In the functional case we have tlienc-
tional sphereof H, defined asSy = {f € H: ||f||z = 1}, and thefunctional sphere of dimension
p, which is the set of functions dfl that, expressed in thp-truncated basis, have unit norm:

Sh={f =3P, x¥ eH:|fllz = 1}.

The relationship betweesf andSf is particularly interesting to develop the test. Let¥e-
((‘Pi,‘Pj»ij the matrix of inner products of thp-truncated basisy§, = {x eRP:X"Wx = 1} the
p—ellipsoid generated by this matrix aRI R the Cholesky decomposition 8f (a semi—positive
matrix). First of all, we have the trivial isomorphism that maps elemerﬁgw elements osﬁ; by
means of the functional céiicients:¢ : f = 3P| x¥j € S§ = ¢(f) = x € S§. Recall that func-
tionsg andg* are well defined becaugé|| = <Z,P:1 S SN x,-‘P,-) = x"¥x. We must consider

also a linear transformation fros? to S}, which is given byp : x € SP - p(x) = R™x € S§ and

whose Jacobian i®| %, the determinant of the matriR 2.

Using these two transformations, the integration of a functional opefatuith respect to a
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functional covariate/P in S can be reduced to a real integration on ghaphere:

P p
fs T = fs : T(Zgj‘l’j)dgp= fs |R|_1T(Z(R‘1g)j‘1’j)dgp.
p J:l

P -
H ¥ =1
In the case where the basis is orthonormiaandR are the identity matrix of ordep. Then the

codficients ofy® e SP in the basis{‘P,—}';:l belong toSP without any transformation.

2.2 Functional linear model

Suppose thaX is a functional random variable iH andY is a real random variable. If both
variables are centred, i.&,[X(t)] = O for a.e.t € [0,1] andE[Y] = O, the Functional Linear

Model (FLM) with scalar response claims for the following relation:

Y=(X,8)+¢e= fX(t),B(t) dt+ ¢,

where the functional paramej@belongs tdH ande is a random variable with zero mean, variance
o2 and such thak [X(t)] = O, Vt. The prediction ofY is done with the conditional expectation of

Y givenX:
m(X) = E[YIX] =(X.5).

Saying that{, Y) share the functional linear model is equivalent to saying that the regression func-

tion of Y on X, m, belongs to the family = {{-,8) : B € H}.

Given a sampleX, Y1), ..., (Xn, Yn), the estimation of the functional parameter can be done

by minimising the Residual Sum of Squares (RSS):
n
B — i (X BY)2
j = arg ggﬂgln; (i = (X0 B))2.

A possible method to search for the paramgtérat minimises the RSS is representing the func-

ACCEPTED MANUSCRIPT
6



Downloaded by [University of Santiago de Compostela] at 08:11 21 October 2013

ACCEPTED MANUSCRIPT

tional data and the functional parameter in the truncated functional bﬁﬁ}%l and{ej};)il, re-
spectively:
Px Ps
Xi(pX) = ZC”“PJ', ,B(pﬁ) = Z bj@j, i=1...,n
j=1 j=1
Using the vector notatioX = (X™”),, C = (;)ij, ¥ = (¥;);, b = (b;); and@ = (6;);, the previous

representation can be expresse&as Cy ands®) = 9"b. The functional linear model results in
Y=(X,8)+e~CIb+e=2b+e¢, Q)

whereJ = (<‘I’i,9,->)ij. Then, basis representation allows to express the FLM as a standard linear
regression, where the estimated ffi@&ents ofg in the basis{ej}?il are given byb = (Z72)1Z7Y.
Px
j:

Although diferent combinations df¥;} " and{ej}?il are possible, the usual choice{%j}?zl =

{e}p , being{‘I’-}P an orthogonal basis because in that case the matsixliagonal.
1j=1 =1

There are several alternatives to represent the functional process and estimate the parameter
B in a truncated basis. For instance, a general review of the estimation based on the use of basis
expansions such as Fourier series or B—splines can be found in the book by Ramsay and Silverman
(2005). The so called Functional Principal Component (FPC) regression estimation, proposed by
Cardot et al. (1999), provide an orthogonal data—driven basis that gives the most rapidly conver-
gent representation of the functional dataset predictot isense (see Hall and Horowitz (2007)).
Preda and Saporta (2002) have proposed the Functional Partial Least Squares (FPLS) regression
method that produces iteratively a sequence of orthogonal functions, as the FPC are, but with max-
imum predictive performance. To implement any of the methods shown before, it is required to fix

the number of basis elements (or components) that are used in the estimation.

The optimal number of components, has to be fixed based on the information provided by
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the data. To do this, Hall and Hosseini-Nasab (2006) and Preda and Saporta (2002) use the predic-
tive cross—validation criterion (PCV), Cardot et al. (2003) and Ferraty and Romain (2011) consider
the generalized cross—validation criterion (GCV) and Chiou aiillévi(2007) and Febrero-Bande

et al. (2010) consider those methods based on the AIC, AICc and BIC information approaches.

Let denote byV{P' = (x{P, ) and¥?, = (X, 5P} the prediction ofY; usingp compo-
nents with the whole sample and with the whole sample excluding-theslement, respectively.

The PCV is defined as:

1 n S(p) 2
PCV(p) = argmin— le (Y-
1=
which is computationally expensive because it involves the estimation gﬁgﬁm times. This
is especially expensive in the case of data—driven basis (FPC, FPLS) because the basis has to be

recalculate for every datum. As an alternative, GCV avoids recalculatingf®hfer every datum

by introducing a penalty term. The GCV is defined as
~ 2
Zinzl (YI _ Yi(p))
n(1-9)

wheredf is the number of degrees of freedom consumed by the model, typically given by the

GCV(p) = arg rrgin (2)

trace of the matriXZ. GCV is closely related with AIC, AlCc and BIC although they come from

different perspectives.

2.3 Random projections

Random projections are becoming quite popular when dealing with high dimensional data, as a
way to overcome the well knoweurse of the dimensionalityThe main idea behind is to reduce
the dimension, and characterize the original distribution of the multidimensional data by the dis-

tribution of the randomly projected univariate data.
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In the goodness—offit field, this is specially interesting, as the test procedures tend to become
less dficient, less powerful, when the dimension of the model increases. Escanciano (2006) used
this technique to develop a goodness—of—fit test for multivariate regression models based on ran-
dom projections. According to his simulation study, the test has an excellent power performance

and has the best empirical power for most situations when comparing to their competitors.

In the functional framework, it is also possible to consider random projections. Usually, this is
achieved by considering the inner product of the functional vari¥lwéH and a suitable family of
projectors, i.e. random functionan H. For example, using with this approach Cuesta-Albertos et
al. (2007) developed some goodness—of—fit tests for parametric families of functional distributions,

which includes goodness—offit tests for Gaussianity and for the Black—Scholes model.

A very interesting result on projections can be found in Patilea et al. (2012). In their paper, the
authors provide a characterization of the conditional expectation of a scalar vafiatiterespect
to a functional variableX given in terms of the conditional expectationYiwith respect to the

projectedX. The result is stated here in the following lemma.

Lemma 1 (Patilea et al. (2012))Let Y be a random variable an¥l a functional random variable

in the functional spac#l. The following statements are equivalent:
I. E[Y|X = X] =0, for almost every (a.e.) & H.
Il. E[Y|(X,y)=u] =0, fora.e. ue R andVy € Sy.

. E[Y|(X,y)=u] =0, fora.e. uc RandVy € S%, ¥p > 1.

ACCEPTED MANUSCRIPT
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3 The test

The presentation of the goodness—of—fit test that we propose in this paper is divided into three sec-
tions. The first and most important presents the theoretical fundamentals of the test, with starting
point in Lemma 2, which proof is detailed in the appendix. The second derivestéuotivee im-
plementation of the test statistic in practise considering some geometrical and matrix arguments.
Finally, the bootstrap resampling for the calibration of the test statistic is presented in the last

section.

3.1 Theoretical arguments

LetY be a real random variable aita functional random variable in the spd¢eGiven a random
sample((X;, Y}, we are interested in checking if a functional linear model is suitable to explain
the relation between the functional covariate and the scalar response, i.e., test for the composite

hypothesis:

Ho:me{(.B): B eHj},

versus a general alternative of the foia : P{m¢ {(-,8) : B € H}} > 0. Further, the simple

hypothesis, i.e. checking for a specific functional linear model:
Ho : m(X) = (X,Bo), for afixedB, € H,

is also of interest as it includes the important case of no interaction between the functional co-
variate and the scalar response (considesyft) = 0, Vt). In what follows we will focus on the
procedure for the composite hypothesis, given that the simple is obtained just considering that the

functional parameter is known and substitutthgnd3® by B, andﬁgp), respectively.

The key point to test the null hypothesig is the following lemma, an adaptation of the Lemma
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1 to our setting, which gives the characterizationHgfin terms of the random projections &t
Lemma 2. Lets be an element dfl. The following statements are equivalent:
l. m(X) = (X,B), X € H.
. E[Y-(X,B)|X =X] =0, for a.e. xe H.
. E[Y —<(X,B8)|(X,y) =u] =0, fora.e. ue R andVvy € Sy.
IV. E[Y —(X,B)|{(X,y) =u] =0, fora.e. uc RandVy € S°, Vp > 1.
V. E [(Y —(X, ﬁ>)1{<x,y>§u}] =0, for a.e. ue R andVy € Sg.
VI. E[(Y = (X.B)Lixy=u | = O, for a.e. ue Randvy e SE, vp > 1.

Then Hy is characterized by the null value of the mom&(Y - (X.8))Lixy=u/. for a.e.
ue R andV¥y € Sy (or Vy € SP, ¥p > 1) and a possible way to measure the deviation of the data

from Hy is by the empirical process arising from the estimation of this moment:

n

Ro(uy) =072 " (Y = (X0, 5)) Lixipeu (3)

i=1
that will be denoted as thieesidual Marked empirical Process based on Projecti®dPP). The
marks of (3) are given by the residug¥ — (Xi,[s)}i”:l and the jumps by the projected functional
regressor in the directiop, {(Xi,y)}_;. The estimation o can be done by éfierent methods as
described in Section 2. Note that the RMPP only depends on the residuals of the model considered
(in this case the residuals of the FLM) and therefore it can be easily extended to other regression

models (see Section 6 for discussion).

To measure the distance of the empirical process (3) from zero, two possibilities are the

classical Crarar—-von Mises and Kolmogorov—Smirnov norms, adapted toptiogected space
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II =R X Sy
PCVM, = f Ra(U 7)? F, (dU) co(dy), (@)
11
PKS, = sup |R.\(u,y)l, (5)
(uy)ell

whereF,, is the empirical cumulative distribution function (ecdf) of the projected functional data
in the directiony (i.e. the ecdf of the dat&Xi,y)}L;) andw represents a measure 8n. Un-
fortunately, the infinite dimension of the spa&emakes infeasible to compute the functionals (4)
and (5) and some kind of discretization is needed. A solution to this problem is to consider the
properties of the Hilbert spad&and use a basis representation.

Up to this end, let us introduce some notation. [_‘E]:} be a basis oHl and consider the

j=1
p-truncated basiE{‘ j}'jo:l, with matrix of inner product¥. Denote bei(p) andy® the represen-
tation of the functionsX; andvy in the p-truncated basis, with vectors of dheientsx; , andgp,

j

respectively, and for= 1, ..., n. Using this, a&{‘l’j} ) Is any basis, we have that
< Xi(p)’ 7(p)> = x[p ¥ g,.

By analogy with the previously defineé,,, we will denoteF,,w» to the ecdf of the projected
functional data expressed in tipetruncated basis, both for the projecjoand for the functional

data. Then, the RMPP can be expressed in termgetfrancated basis, yielding

n
_1
Rnp (U, »y(p)) =N 2 Z]; (YI — XIP‘P bp) ]l[XIp\ngSU] = Rn’p (u’ gp) ,
1=
whereb, represents the céiecients of3 in the p—truncated basi{s\P j};ozl.

Bearing in mind this, our test statistic propose is a modified version of (4) that results from
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expressing all the functions in@-truncated basis @it

2
PCVM,, = f  Rup(WyP)" Foyo(du) w(cy®). (6)
SpxR

We have decided to choose the C&arvon Mises statistic because, as we will see, presents impor-
tant computational advantages and can be adapted to the given framework of Escanciano (2006)
for the finite dimensional case. The most important advantage is that we can derive an explicit
expression where there is no need to compute the RMPP flereht projections, property that

does not hold for the Kolmogorov—Smirnov statistic.

Using that the integration in thp-sphere off can be expressed as the integration in phe
sphere ofRP via the transformations defined in Section 2.1, we have:
I:)CVMn,p = Rn,p(ua gp)z Fn,gp(du) w(dgp)
SExR

_ f IRI Ry p(U R™1G5)2 F i, (0U) ao(Clgp)
SPxR
n 2

- fs p RlR'_l[n_%Z(Y‘ =X, ¥0p) L g | Frrog@ioldgy),  (7)

i=1
wherew now represents a measure in ghesphereSP that, for simplicity purposes, will be con-

sidered as the uniform distribution &A.

Essentially, what we have done is to treat the functional procesgpamaltivariate process,
expressing the functions in a basispélements. The methods to choose the number of elements
p and to estimate the paramefdooth for the simple and for the composite hypothesis are the ones

introduced in Section 2. These methods will be illustrated in Section 4.
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3.2 Implementation

Following the steps of Escanciano (2006) it is possible to derive a simpler expression for (7).

Using the definition of the RMPP in p-truncated basis, the fact thBfg-14, is the ecdf of

X[ WR™gp)L; = (X[ ,RTgpl, and some simple algebra, we have:
PCVM,, = f IRI™ Ry p(U, R™gp)? Frr-1,(dU) dgp
SPxR

n

=nt Z Z Eigj f IR 1 () RTgp<u}IL{XT RTgp<) Frr1g,(du) dgp
i=1 j=1 SPxR
n n n

with & =Y, - (Xi(p),[?(p)). The termsAj; represent the integrals

. o _1
Ajr = slel ]l[XIpRTgpSXIpRTgp]]l[XIpRTgpSXIpRTgp}dgp

1
= fS lel L{ (Rt p-Rxep)Tgp=0. (Rx; pRxr ) g0} A9p

= |R|_1 dgpa
Sijr

whereS;;; = {.f esSP:2< (Xi',p - x;,p,f) < 3—2” 5<« (x]’p - x;,p,f) < 7”} and« (a, b) represents

the angle between vectoasandb. To simplify notation, we denotg’k’p = RXyp (X,k,p = Xp If

the basis is orthonormal) fadr= 1,...,n. Depending onx; » the regionS;;; can be the

J p, r p1
whole sphere? (x; ; = X}, = x; ), @ hemisphere o8P (x{ , = X{ ,, X , = X[, Or x| , = X; ;) or a
spherical wedge (see Figure B1 in appendix) of width angle given by

T
_ arcco{ (Xi,,p - X;,p) (le,p - 1" p) ]

X, = Xg ol X, = X7

(8)

ThusA;; is the product of the surface area of a spherical wedge of alglémes|R|™?, and
j
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is given by

4 — !’ — ’
2, Xio=Xip=Xp

(0)” - ©) _ ) _
= A (Ep) IRI A =1 =, X o= X 0 X o =X, 0N X, =X,

(8), else.
We also have a symmetric propery;, = Aji, which simplifies the evaluation of the test statis-
tic from O(n°) to O((n3 + n2)/2) computations. The memory requirement is expensive, because
we need to store than{ + n?)/2 elements of the three dimensional arfaywhich is symmetric
in its two first indexes. However, this requirement can be stretched if we consider the following

expression for the statistic:
PCVM,, = N28TA.&, 9)

whereA, = (ZP=1 Aijr )ij is an x n matrix andg is the vector of the residuals. By the definition of
AI.(J.Or) and its symmetry in the first two entries, the matixis symmetric and its diagonal terms are
given by @1+ 1)r. Although the order of computations remains simi@((n* - n?)/2), the mem-

ory required for storing the matri&, is substantially lower and drops to?(- n + 2)/2 elements.

This fact improves drastically the time of computation of the statistic and allows to apply the test

to larger datasets.

Again, let us remark that the expression derived for the PCyatatistic remains valid for any
functional regression model with scalar response and not just for the FLM, as the expression is

based on the residuals of the model.

3.3 Bootstrap resampling

To calibrate the distribution of the statistic PCypunder the null hypothesis, a wild bootstrap on

the residuals is applied. This bootstrap procedure is consistent in the finite dimensional case, as
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it was shown in Stute et al. (1998), and is adequate to situations with potential heterocedasticity,
guite common in functional data. The resampling process for the case of the composite hypothesis,

given an initial estimatiop™ of the functional parameter, is the following:

I. Construct the estimated residuats="Y; — <Xi(p),[3’(p)>, i=1...,n

Il. Draw independent random variabl¥s, .. ., V, satisfyingE* [Vi*] = 0 andE* [V.*z] = 1. For

example, ifV* is a discrete random variable with distribution WeigIHI{S/* = 1‘—2‘/?’} = 5+1—8/§

P{V* = 1*—2V§'} = 5‘1—3/?’ we have theolden section bootstrap

lll. Construct the bootstrap residuais= V&, i =1,...,n.

IV. SetY; = <Xi(p),/3’(p)> +&f, 1 =1,...,nand estimatg“( for the sample{()(i,Yi*)}

n
i=

1

V. Obtain the estimated bootstrap residugls:"Y;" — (Xi(p),[%*’(p)>, i=1,...,n

Then, the procedure to calibrate the test is the following. In step | we compute the test statistic
with the residuals undetly using the implementation (9) of the previous section. Then repeat steps
II-V for b = 1,..., B, computing each time the bootstrap statistic PGJM n-2z">TA,&"" and

estimate thep—value of the test by Monte Carlo:{PCva < PCvM:®

,p} /B. For computational

efficiency, it is important to note that we do not have to compute again the mAgtiixthe boot-

strap replicates.

A very interesting fact of the FLM is that step V can be easily performed using the properties
of the estimation of®. From (1) it is clear that the vector of céieients of 3P is estimated
throughoutb = (ZTZ)_1 Z"Y. Then, the estimated bootstrap residuals, represented by the vector
&", can be obtained &s = (I p—2Z (ZTZ)_1 ZT)Y*, whereY * is the vector of bootstrap responses
given in step IV and,, is the identity matrix of ordep. The projection matri%l o—Z (ZTZ)_1 ZT)

remains the same for all the bootstrap replicates, so it can be stored without the need of computing
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it again. Obtaining the residuals in this way implies a significative computational saving.

The bootstrap resampling in the case of the simple hypothesis is easier: just ﬁéiﬁlbygé}f)p)

and omit steps IV and V, consideriag = &/, i=1,...,n.

4  Simulation study

To illustrate the finite sample properties of the proposed test, a simulation study was carried out for
the simple and the composite hypotheses. The functional process considered for the functional co-
variateX is an Ornstein—Uhlenbeck process inI) which corresponds to a Brownian motion with
functional meanu and covariance function given by C&(9), X(1)) = £ e+ (ezgmi”(St) - 1).

We have consideregi= 3, o = 1 and the functional meau(t) = 0, Vt € [0,1]. See Figure B2 in

appendix for further details.

All the functional data in this simulation study is represented in 201 equidistant points in the
interval [Q 1]. The number of bootstrap replicates considere8 is 1000 and the number of
Monte Carlo replicates for determining the empirical sizes and powérs, 1000. The sample
size, except otherwise statednis: 100. Lastly, in order to properly compare th&eet of the kind
of basis, the number of elements and the sample sizes, the initial seed for the random generation

of the functional underlying process is the same for each model.
Several lengthy tables have been reduced in this section for space saving. The reader is referred

to the appendix in supplementary materials to see the whole tables as well as other explanatory

figures.
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4.1 Testing for simple hypothesis

The simulation study for the simple hypothesis is centred on theldgsen(X) = (X, Bo), Where

Bo(t) = O, t € [0,1]. This is equivalent to test that the functional covaridtdas no &ect on

the scalar response, i.e., test the null hypothEgis m(X) = 0. Although there is an extensive
collection of goodness—offit tests for finite dimensional covariates (seea&anlanteiga and
Crujeiras (2011)), the literature for the case of functional covariates is more limited. Therefore,
we will focus on the competing procedures of Delsol et al. (2011) and &enManteiga et al.
(2012) to compare the fllerent tests in terms of level and power. Let us describe briefly these two

test statistics.

Delsol et al. (2011) propose a test statisticltyr: m(X) = my(X), deriving its asymptotic law

and giving a bootstrap procedure based on the residuals. The statistic, inspired by the proposal of

Hardle and Mammen (1993), is

- [Z(Y mo(X))K(d(XX))] W(X)APA(X).

whereK is a kernel functiond is a semimetric andl is the bandwidth parameteRy represents

the probability distribution of the functional process amds a suitable weight function. The test
used in our implementation results from considering no functiofiiatg i.e.Hoy : my(X) = 0, and

from approximating the integral with respectdBy by the empirical mean of the sample. We have
also considered the kernié(t) = 2¢(|t|), t € R, being¢ the density of aVv(0, 1), theL? distance in

H for d and the uniform weight function. The bandwidth parameter is given by the PCV criterion

and bootstrap resampling was done using golden wild bootstrap.

The other competing test is the one proposed by Gl@zzManteiga et al. (2012) and is based
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on the idea of extending the covariance to functional-scalar data:

5y (- (n-Y)

i=1

Dn:

H
whereX is the functional mean ofX;}, and isY the usual scalar mean ofi},. The authors
extend the ideas of the classi¢attest to the functional framework, resulting a statistic to test the
null hypothesis of no interactiomsidethe functional linear model. The test is consistent and the
authors derived the asymptotic distribution of the proc%egil (Xi - /ﬂ (Yi - \7) resulting in a
Brownian motion with meai® [(X — ux)(Y — uy)] and a particular covariance structure. This test
can be viewed as a possible benchmark in our simulation study and, recalling its similarity with
the classicaF—test, will be denoted as thanctional F—test The bootstrap resampling was also

performed using golden wild bootstrap.

Three diterent blocks of deviations from the null are considered. The first two blocks represent
a deviation inside the linear model, i.e., considerirftedent functiongjy, j = 1,2, k=1,2,3,in-
stead of3p. The linear functions amg, k(t) = y«x-(t—0.5), with codticientsy; = 0.25,y, = 0.65 and
¥3 = 1.00 for Hy andBak(t) = 5k - sin(2rt3)2, with 7, = 0.10,7, = 0.20 andys = 0.50 forHyx. The
second block of deviations from the null hypothesis consists on addiegand ordeterm(X, X)
to the regression function, thus the model is no longer linedfef2int weights for the second term
are represented in the alternativsg, : Y = (X, Bo) + 6k (X, X) + &, wheres; = 0.005,6, = 0.010
andéz = 0.015. The relation between the variance of the response with respect to the variance of
the error can be measured by tignal-to—noise ratipsnr = E[m(X)Z] /(E [m(X)z] + 0?). For
block 1 the snr’s of the alternatives ar®@4, 0235 and M21, respectively foHy, k = 1,2, 3.
For block 2, the snr’s are.019, 0150 and 0329. For block 3, we have @15, Q086 and ®72.

In the case of the simple hypothesis there is no estimation of the pargspedsrit is known.

However, it is necessary to express the functional propesyl the functiors, in a suitable basis
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in order to compute the test statistic. To this end, we consider a B—splines basis and we choose

automatically its number of elements by the GCV criteria commented in Section 2.1.

The results of the study for the simple hypothesis are collected in Table 1, which shows the
empirical sizes and powers of the functiofattest, the test of Delsol et al. and the PCvM test
for simple hypothesis, for the models previously commented. All of the tests seem to calibrate
the significance levak = 0.05. With respect to the power, the functiorfattest has in average
a superior behaviour in the alternativielgy, which represents deviations from the nuide a
linear model. The test of Delsol et al. performs also well with the cross—validatory bandwidth,
being the most competitive for the bloek x. The PCvM test has lower power than the functional
F—test for alternativesl; x andH,x and similar or lower power to the test of Delsol et al., which
is in part favoured by an over-rejection of the null hypothesis. Nevertheless, for alternatives that
are not inside the linear model, the PCvM test results the most powerful. Met;its and four
L2-based semi—metrics were considered also for the test of Delsol et al., without obtaining better
results than with thé.? metric. Similar results are obtained with a noise given by a recentred

exponential distribution with parameteér= 10.

4.2 Testing for composite hypothesis

To see the performance of the test under the composite hypotigsisn € {(-,8) : B € H} we

have considered threeffiérent null models of the form
Hio: Y:<X,,6’j>+s, (10)

with j = 1,2, 3 being the index of the threefterent models. The functional dbeients of the
three FLM ares,(t) = sin(2rt) — cos(2rit), Bo(t) = t — (t — 0.75)? andBs(t) = t+ cos(2t), t € [0, 1].

The second functional céiecient is chosen to be perfectly described by B—splines, whereas this is
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not the case fo8, andps.

In order to check the power performance of the test, a set of possible deviations from the linear
regression model is considered. Again, a second order&r) is introduced to transform the
model into a non—linear one. Thredfdrent weights for this term are considered, representing the

alternativedH.:
Hic: Y =(X.8j) +6(X.X) +&. (11)

The index for the model is denoted hy= 1,2,3 andk = 1,2, 3 is the index that measures the
degree of the deviation from the null hypothesis. The weights of the quadratic tedim-ai@01,

6, = 0.05 anddés = 0.10. The snr’'s for model 1 are&23, 0824, 0834 and (B61, respectively
for Hiy, k = 0,1,2,3. For model 2, ®49, 0949, 0950 and M53. For model 3, we havedr1,
0.971, Q971 and ®72.

Three estimation methods for the functional paramgtenll be considered. All of them are
designed in order to provide automatic selectors of the number of elements considered in the basis
estimation of3. So, the first automatic method considered is the estimatighasfa linear com-
bination of a B—splines basis pfelements, where is chosen by the GCV criteria (2). Secondly,

FPC estimation relies on the BIC criteria to choose the optimal number of elements in the FPC
basis derived from the process to estim@at€inally, the FPLS method also uses PCV to select the

adequate number of elements in the FPLS basis derived from the joint sgAiphé)} ;.

Table 2 shows the rejection frequencies of the null hypothesis for the test computed from ob-
servations of the null hypotheses (10) and deviations (11), for the significancerleved.05.
The rejection rates were computed for the three types of estimation of the functiofiadieae

and basis representation, in order to see the posdilglete of the estimation method in the power
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performance. At sight of the rejection frequencies for the three models, several comments must be
done. Firstly, the test respects the significance levels for the null hypothesis for the three estimation
methods considered. Secondly, there seems to be noftegattices in terms of power for the three
methods, although it can be observed that the FPC and FPLS estimation methods are slightly more
conservative. Finally, at sight of the similarities between the response under the null and under the
alternatives (see Figure B4 in appendix), the results of Table 2 point toward a quite competitive
test. Similar results are obtained with a non symmetric random noise.

The behaviour of the test for fierent sample sizes is shown in Table 3. As in the previous
tables, the three estimating methods have very similar rejection ratios and we can see that B—
splines estimation has again larger rejection ratios for all the models. As expected, when the

sample sizes increases, the rejection rates also do.

5 Data application and graphical tool

The Tecator dataset is a well known dataset in the literature of functional data analysis (see, for
example, Ferraty and Vieu (2006)). It contains data from 215 meat samples, consisting of a 100
channel spectrum of absorbances measured by a spectrometer and the contents of water, fat and
protein. When trying to explain the content of fat in the meat samples throughout the spectrometric
curves, itis common to transform the original curves into the first derivatives or the second deriva-
tives, in order to properly capture the waueets of the meat samples with high percentage of fat

(see the left plot of Figure 1).

We have applied our goodness—of—fit test witl= 5000 bootstrap replicates for the original
dataset and for the dataset of the first and second derivativesp-Madues obtained are@4,
0.000 and @00, respectively. Thus we have significative evidences against the null hypothesis

of FLM. The test was applied with the FPLS estimation method and with automatic selection of
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the number of FPLS by PCV. As the case of no interaction is a particular case of a FLM, we can
conclude that in the Tecator dataset there exists a significative dependence between the functional

covariate and the scalar response, although this dependence is not a linear one.

The other dataset considered is the AEMET dataset, which is available iR freckage
fda.usc (see Febrero-Bande and Oviedo de la Fuente (2012)). It is formed by the daily sum-
maries of 73 Spanish weather stations during the period 1980-2009. Among others, the functional
covariate is the daily temperature in each weather station, and the scalar response is the daily wind
speed (both variables are averaged over 1980-2009). The center plot of Figure 1 represents the
functional observations of the daily temperature. Before applying the tests, four functional outliers
corresponding to the 5% less depth curves according to the Fraiman and Muniz (2001) depth were
removed.

The resultingp—value from the goodness—of—fit test i4 21, thus there is no significative ev-
idences to reject the null hypothesis of the FLM for the AEMET dataset. The test is applied with
the FPLS estimation method and with= 5000 bootstrap replicates. The right plot of Figure 1
shows the estimated functional paramg@tenresulting from a basis of 2 FPLS. Once we have deter-
mined that the FLM is a suitable model, we can check if the estimateti@eatg is significantly
different from zero with the available tests for the simple hypothesis: the funckeitedt, the test
of Delsol et al. (with PCV bandwidth) and our test for the simple null hypothesis of no interaction.
The p—values obtained are: @2, Q000 and MO0, respectively. All the tests reject the null, so
we can conclude that the curves of the temperature and the average wind speed show a non-trivial

linear relation.

We conclude this section showing a graphical tool to visualize the goodness—of-fit of the FLM
to a dataset that can be useful to practitioners. The key idea is to compare graphically the process

(3) obtained with the residuals of the fitted model with the processes obtained with the bootstrapped
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residuals under the null hypothesis. The path of the RMPP depends on the random projections
and therefore it is diicult to compare two trajectories of the process. However, integrating with
respect toy results a process that does not depend on the projections. Further, this integration is
easily approximated by Monte Carlo:

G
Rl = [ Ruun)aldn) = £ > R vo)
g=1

Su

beingyy functions inSy and G the number of Monte Carlo replicates. Fgyj, a possibility is

to consider stationary Gaussian processes with unit norm. Figure 2 shows the comparison of the
observed procesR, and B = 100 bootstrapped processes under the null, for the two studied
datasets. Consistently with the obtaingeialues, the observed processes for the Tecator dataset
seem to be significantly fierent, whereas for the AEMET dataset the observed process is just an

ordinary trajectory of the bootstrapped ones.

6 Conclusions

We have presented a goodness—of—fit test for the null hypothesis of the functional linear model.
The test is constructed adapting the propose of Escanciano (2006) to the functional scheme using
a basis representation. fRarent estimation methods for the functional parameter were considered,
showing in general a similar behaviour in the performance of the test. The simulation study shows
that the test behaves well in practise: respects the significance level and has good power. The test
was applied to two real datasets to determine if the FLM was plausible, rejecting the null hypoth-

esis for the first and finding no evidences for rejecting in the second.

The asymptotic distribution of the statistics PCylhd PCvM, ,, quadratic functionals of the
processeR, andR,p, respectively, is an open problem. The convergence of both processes re-

mains as a problem of great relevance to be considered in the future, taking into account that these
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processes are indexedinx H and that it does not exist, up to our knowledge, any results of weak

functional convergence of empirical processes indexed in infinite dimensional spaces.

Although in this paper we have focused on the functional linear model, the proposed test can be
extended to checking for any other regression model with functional covariate and scalar response.
As the statistic is based on the residuals, the practical implementation and the wild bootstrap cal-
ibration given in Section 3 will remain the same: we just have to consider suitable estimators for
the parameters of the regression model to compute the residuals. Therefore, obvious extensions

could be the testing of FLM with several covariates or the testing of the quadratic functional model.

Finally, let us remark that the code for the implementation of the goodness—of—fit test in
the simple and composite cases is available throughout the funfliontest of the R library
fda.usc since version 0.9.8. This function also shows the graphical tool introduced in Section 5.
To speed up the computation of the test statistic, the critical parts of the test implementation have

been programmed in FORTRAN.

SUPPLEMENTAL MATERIALS

Appendix: Contains the proof of Lemma 2, explaining figures and more detailed tables for the

results of the simulation study. (pdf file)

R-package forflm.test, flm.Ftest and dfv.test routines: R-packagefda.usc containing
code to perform the testing methods described in the article. The package also contains the

AEMET and Tecator datasets used as examples in the article. (GNU zipped tar file)
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Models| F—test PCvM Delsol edl. || F—test PCvM Delsol edl.
Ho 0.060 0.041 0.065 0.043 0.051 0.066
Hi 0.060 0.069 0.098 0.056 0.052 0.072
Hi, 0.163 0.078 0.309 0.180 0.085 0.285
His 0.401 0.138 0.772 0.442 0.166 0.719
Hoa 0.248 0.053 0.080 0.265 0.071 0.089
Hoo 0.951 0.336 0.403 0.932 0.343 0.420
Hos 1.000 0.904 0.877 0.999 0.901 0.848
Hs1 0.034 0.173 0.165 0.052 0.125 0.128
Hs» 0.038 0.691 0.554 0.034 0.721 0.558
Hss 0.019 0.998 0.932 0.012 1.000 0.967

Table 1: Empirical power of the competing tests for the simple hypotheigis m(X) = (X, o), Bo(t) =
0, Vt and significance levet = 0.05. Noise follows aV/(0, 0.10%) and a recentred Exp(10).
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Models| B-splines FPC FPLS| B-splines FPC FPLS
Hio 0.061  0.052 0.059 0.039 0.046 0.046
Hi1 0.094  0.082 0.078 0.074  0.072 0.077
Hio 0.747  0.732 0.715 0.737  0.721 0.720
His 0.997  0.997 0.996 0.996  0.997 0.996
Hao 0.058  0.045 0.050 0.041  0.035 0.033
Ho1 0.086  0.071 0.074 0.081 0.080 0.078
H,o 0.745  0.722 0.720 0.743 0.724 0.718
Hos 0.997  0.996 0.997 0.994  0.9950.994
Hzpo 0.054  0.046 0.044 0.052  0.040 0.038
Hs1 0.082  0.077 0.075 0.072  0.062 0.062
Hs 0.764 0.752 0.750 0.735 0.737 0.721
Has 0.999  0.998 0.998 0.998  0.998 0.997

Table 2:Empirical power of the PCvM test for the composite hypothékjs m € {(-,8) : g € H} and for
three estimating methods gfat significance levat = 0.05 with noiseN/(0, 0.10?) (first three columns) and
recentred Exp(Q0) (last three).
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Hio Hi1 Hio His

Method 50 100 200 50 100 200 50 100 200 50 100 200

B—spline 0.076 0.061 0.062 0.093 0.094 0.121 0.484 0.747 0.966 0.900 0.997 1.000
FPC 0.059 0.052 0.059 0.064 0.082 0.123 0.442 0.732 0.963 0.893 0.997 1.000
FPLS 0.062 0.059 0.058 0.069 0.078 0.115 0.414 0.715 0.961 0.873 0.996 1.000

Table 3:Empirical power of the PCvM test for the composite hypothékjs m € {(-,8) : g € H} and for
different sample sizas Noise is aN/(0, 0.10%).
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Figure 1: From left to right: Tecator dataset with spectrometric curves coloured according to their
content of fat (red for larger and blue for lower); AEMET temperatures for the 73 Spanish weather
stations; estimated functional d&eient by the FPLS method for the AEMET dataset.
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Figure 2: R, process observed (solid line) aBd= 100 generated process under the null hypothidsis
me {{-,B) : B € H} (dashed lines), for the Tecator dataset (left) and the AEMET dataset (right). The number
of Monte Carlo replicates for the projectiongds= 200.
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